Home
Class 12
MATHS
f(x)=(4^x)/(4^x+2),t h e nf(x)+f(1-x)...

`f(x)=(4^x)/(4^x+2),t h e nf(x)+f(1-x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f: Rvec (-1,1) is defined by f(x)=-(x|x|)/(1+x^2),t h e nf^(-1)(x) equals sqrt((|x|)/(1-|x|)) (b) -sgn(x)sqrt((|x|)/(1-|x|)) -sqrt(x/(1-x)) (d) none of these

If f: Rvec(-1,1) is defined by f(x)=-(x|x|)/(1+x^2),t h e nf^(-1)(x) equals sqrt((|x|)/(1-|x|)) (b) -sgn(x)sqrt((|x|)/(1-|x|)) -sqrt(x/(1-x)) (d) none of these

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)="cos"((log)_e x),t h e nf(x)f(y)-1/2[f(x/y)+f(x y)] has value (a) -1 (b) 1/2 (c) -2 (d) none of these

If f(x)="cos"((log)_e x),t h e nf(x)f(y)-1/2[f(x/y)+f(x y)] has value (a) -1 (b) 1/2 (c) -2 (d) none of these

If f(x)="cos"((log)_e x),t h e nf(x)f(y)-1/2[f(x/y)+f(x y)] has value (a) -1 (b) 1/2 (c) -2 (d) none of these

If f(x)=(log)_x(log x),t h e nf^(prime)(x) at x=e is equal to (a) 1/e (b) e (c) 1 (d) zero

If f(x)=(log)_x(log x),t h e nf^(prime)(x) at x=e is equal to (a) 1/e (b) e (c) 1 (d) zero