Home
Class 12
MATHS
2(r=1)^(n)tan^(-1)((2^(-1))/(1+2^(2r)))...

2_(r=1)^(n)tan^(-1)((2^(-1))/(1+2^(2r)))

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n)tan^(-1)((2^(r-1))/(1+2^(2r-1))) is equal to

sum_(r=1)^(n)tan^(-1)((2^(r-1))/(1+2^(2r-1))) is equal to:

sum_(r=1)^(n) tan^(-1)(2^(r-1)/(1+2^(2r-1))) is equal to a) tan^(-1)(2^n) b) tan^(-1)(2)^n-pi/4 c) tan^(-1)(2^(n+1)) d) tan^(-1)(2^(n+1))-pi/4

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

The value of the lim_(n rarr oo)tan{sum_(r=1)^(n)tan^(-1)((1)/(2r^(2)))}_( is equal to )

If sum_(r=1)^(infty) tan ^(-1)((1)/(2 r^(2)))=t then tan t is equal to