Home
Class 11
MATHS
The sum of all roots of sin(pi(log)3(1/x...

The sum of all roots of `sin(pi(log)_3(1/x))=0` in `(0,2pi)` is
(a) `3/2` (b) 4 (c) `9/2` (d) `(13)/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)(0) is equal to : (a) 0 (b) pi/6 (c) pi/2 (d) pi/3

The number of roots of the equation x sin x=1,x in[-2 pi,0)uu(0,2 pi] is 2(b)3 (c) 4 (d) 0

In the interval (0,2 pi) , sum of all the roots of the equation sin(pi log_(3) (1/x)) = 0 is

The number of roots of the equation x^(3)+x^(2)+2x+sin x=0 in (-2 pi,2 pi)

Sum of roots of the equation x^(4)-2x^(2)sin^(2)(pi(x)/(2))+1=0 is 0(b)2(c)1 (d) 3

[ Number of solution of 4sin^(3)x-4sin^(2)x-sin(pi-x)+1=0;x in[0,pi]; is [ (1) 1, (2) 2 (3) 3, (4) 4]]

The number of solutions of the equation cot(sin x+3)=1, in [0,3 pi] is 0(b)1(c)4 (d) 2

The principal value of sin^(-1)(sin((2 pi)/(3))) is (a)-(2 pi)/(3) (b) (2 pi)/(3) (c) (4 pi)/(3) (d) (5 pi)/(3) (e) none of these

The value of cos^(-1)(cos(5pi)/3)+sin^(-1)(sin(5pi)/3) is pi/2 (b) (5pi)/3 (c) (10pi)/3 (d) 0

The sum of all vaues of theta in (0,(pi)/(2)) satisfying sin^(2) x - sin 2x + sin 3x = 0 ,is