Home
Class 11
MATHS
Period of function f(x)=min(sinx, |x|}+x...

Period of function `f(x)=min(sinx, |x|}+x/pi-[x/pi]` (where [.] denotes greatest integer function) is-

Promotional Banner

Similar Questions

Explore conceptually related problems

Period of function f(x)=min(sin x,|x|}+(x)/(pi)-[(x)/(pi)] (where [ [.] denotes greatest integer function ) is-

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

The domain of the function f(x) =[x]sin pi/[x+1] , where [] denote greatest integer function is:

The period of the function f(x)=(6x+7)+cos pi x-6x, where [.] denotes the greatest integer function is: 3 (b) 2 pi(c)2(d) none of these

The period of the function f(x)=sin(x+3-[x+3]) where [] denotes the greatest integer function

Period of the function f(x) = [5x + 7] + cospix - 5x where [·] denotes greatest integer function is

Period of the function f(x) = [5x + 7] + cospix - 5x where [·] denotes greatest integer function is

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is