Home
Class 12
MATHS
If f1(x)=2x, f2(x)=3sinx-xcosx then for ...

If `f_1(x)=2x, f_2(x)=3sinx-xcosx` then for `x in (0, pi/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=2sinx-x^(2) , then in x in [0, pi]

If f(x)=2sinx-x^(2) , then in x in [0, pi]

Consider a function, f(x)=2/3ln^(3/2) (sinx+cosx) for x in (0,pi/2) The value of Lim_(x->pi/2) f(x)/(pi/2-x)^(3/2)

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{x^(2),2^(x)} ,then if x in (0,1) , f(x)=

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{x^(2),2^(x)} ,then if x in (0,1) , f(x)=

int_0^9 f(x) dx, where f(x)={(sinx, if 0<=x < pi/2), (1, if pi/2 <= x < 3), (e^(x-3), if 3<=x<9):}

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

If f(x) is continuous at x=pi/2 , where f(x)=(cos x )/(sqrt(1-sinx)) , for x!= pi/2 , then f(pi/2)=

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)