Home
Class 11
MATHS
In triangle A B C ,/B=pi/3,a n d/C=pi/4d...

In triangle `A B C ,/_B=pi/3,a n d/_C=pi/4dot` Let `D` divided `B C` internally in the ratio `1: 3.` Then`(sin/_B A D)/(sin/_C A B)` equals (a)`1/(sqrt(6))` (b) `1/3` (c) `1/(sqrt(3))` (d) `sqrt(2/3)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triagnle ABC, angle B=pi/3 " and " angle C = pi/4 let D divide BC internally in the ratio 1:3 .Then (sin (angle BAD))/((Sin (angle CAD)) is equal to

In a Delta ABC,/_B=60^(@) and /_C=45^(@). Let D divides BC internally in the ratio 1:3. then value of (sin/_BAD)/(sin/_CAD) is (A) sqrt((2)/(3)) (B) (1)/(sqrt(3)) (C) (1)/(sqrt(6)) (D) (1)/(3)

The value of sin(1/4sin^(-1)(sqrt(63))/8) is 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

If tan^(-1)x+2cot^(-1)x=(2 pi)/(3), then x, is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3)(d)sqrt(2)

Delta ABC has a right angle at A. If BC = sqrt2 and AB = AC = 1 then sin B is equal to (a) (1)/(sqrt2) (b) sqrt2 (c) (sqrt3)/(2) (d) sqrt3

cot^(-1)(-sqrt3)= (a) -pi/6 (b) (5pi)/6 (c) pi/3 (d) (2pi)/3

In triangle A B C , if b=3,\ c=4\ a n d\ /_B=pi/3, then number of such triangle is 1 (b) 2 (c) 0 (d) infinite

If A>0,B>0, and A+B=(pi)/(3), then the maximum value of tan A tan B is (1)/(sqrt(3))(b)(1)/(3) (c) 3(d) sqrt(3)

The ratio of the areas of a circle and an equilateral triangle whose diameter and a side are respectively equal, is (a) pi\ :sqrt(2) (b) pi\ :sqrt(3) (c) sqrt(3)\ :pi (d) sqrt(2)\ :pi

sin^(-1)(0) is equal to : (a) 0 (b) pi/6 (c) pi/2 (d) pi/3