Home
Class 12
MATHS
lim(x->0)sin^(- 1)((sinx)/x)...

`lim_(x->0)sin^(- 1)((sinx)/x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=lim_(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim_(x to 0)([|x|])/(x), then

If A=lim_(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim_(x to 0)([|x|])/(x), then

lim_(x->0)|sinx|/x

lim_(x->0) (sin(sinx)-sinx)/(ax^3+bx^5+c)=-1/12 then

lim_(x->0^+)((sinx)/(x-sinx))^(sinx) is (a)0 (b) 1 (c) ln e (d) e^1

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is 0 (b) -1 (c) 1 (d) 2

lim_(x to 0) (sin(sinx))/x