Home
Class 11
MATHS
Solve the equation tan^4x+tan^4y+2cot^2x...

Solve the equation `tan^4x+tan^4y+2cot^2xcot^2y=3+sin^2(x+y)` for the values of `xa n dydot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation : tan x+cot x=2

Solve the equation tan(x+(pi)/(4))=2cot x-1

Find all number of pairs x,y that satisfy the equation tan^4) x + tan^(4)y+2 cot^(2)x * cot^(2) y=3+ sin^(2)(x+y) .

If tan x+tan y=25 and cot x+cot y=30 then the value of tan(x+y) is

Solve the system of equations tan^2 x + cot^(2) x = 2cos^(2)y cos^(2)y+sin^(2)z=1

Solve the equation (dy)/(dx)=(x^(3)-2x tan^(-1)y)(1+y^(2))

The general solution of the equation tan^(2)(x + y) + cot^(2) ( x+ y) = 1 - 2x - x^(2) lie on the line is :

Solve the differential equation : sec^(2)x tan y dx + sec^(2) y tan x dy = 0

Solve the equation tan(x-(pi)/4)tanxtan(x+(pi)/4)=(4cos^2x)/(tan(x/2)-cot(x/2).