Home
Class 12
MATHS
y=log sqrt((1+sin x)/(1-sin x))...

y=log sqrt((1+sin x)/(1-sin x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate log sqrt((1+sin x)/(1-sin x)) with respect to x:

Find (dy)/(dx) for the function: y=log_(e)sqrt((1+sin x)/(1-sin gx)), where x=(pi)/(3)

The values of x in [-2 pi,2 pi], for which the graph of the function y=sqrt((1+sin x)/(1-sin x))-sec x and y=-sqrt((1-sin x)/(1+sin x)) coincide are

If y= sqrt ((1+sin x) /( 1-sin x) ,)then (dy)/(dx) =

Find ( dy)/( dx) if y = log _(e) sqrt((1 + sin x)/( 1 - sin x )) , where x = pi// 3

If y=log sqrt((1+sin^(2)x)/(1-sin^(2)x)), then find (dy)/(dx)

y=log ((1-sin x )/(1+sin x )),then (dy)/(dx) =

Derivative of y=(sqrt((1-sin x)/(1+sin x))) is

If y = log ( sqrt( sin x - cos x)) , that prove that (dy)/(dx) = - (1)/(2) tan ((pi)/( 4) + x)