Home
Class 11
MATHS
66. are If ä. T. and c unit coplanar vec...

66. are If ä. T. and c unit coplanar vectors. then the scalar triple product [2a - 25 - ĉ 2c - 0]= 0 (h) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a, vec b and vec c are unit coplanar vectors then the scalar triple product [2 vec a - vec b 2 vec b - vec c 2 vec c - vec a]

If vec a , vec ba n d vec c are unit coplanar vectors, then the scalar triple product [2 vec a- vec b2 vec b- vec c2 vec c- vec a] is 0 b. 1 c. -sqrt(3) d. sqrt(3)

If vec a,vec b and vec c are unit coplanar vectors, then the scalar triple product [2vec a-vec b2vec b-vec c2vec c-vec a] is 0 b.1 c.-sqrt(3)d.sqrt(3)

If vec a , vec ba n d vec c are unit coplanar vectors, then the scalar triple product [2 vec a- vec b2 vec b- vec c2 vec c- vec a] is 0 b. 1 c. -sqrt(3) d. sqrt(3)

If vec a , vec ba n d vec c are unit coplanar vectors, then the scalar triple product [2 vec a- vec b2 vec b- vec c2 vec c- vec a] is a. 0 b. 1 c. -sqrt(3) d. sqrt(3)

If veca, vecb and vecc are unit coplanar vectors , then the scalar triple porduct [2 veca -vecb" " 2vecb - vecc " "2vecc-veca] is

If veca, vecb and vecc are unit coplanar vectors , then the scalar triple porduct [2 veca -vecb" " 2vecb - vecc " "2vecc-veca] is

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product [(2veca-vecb, 2vecb-vecc, 2vecc-veca)]=