Home
Class 9
MATHS
(6-4sqrt(3))/(6+4sqrt(3))...

(6-4sqrt(3))/(6+4sqrt(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

Express each one of the following with rational denominator: (sqrt(3)+1)/(2sqrt(2)-sqrt(3))( ii) (6-4sqrt(2))/(6+4sqrt(2))

Express each one of the following with rational denominator: (i) (sqrt(3)+\ 1)/(2sqrt(2)-\ sqrt(3)) (ii) (6-4sqrt(2))/(6+4sqrt(2))

Simplify each of the following by rationalising the denominator : i) (6-4sqrt(2))/(6+4sqrt(2)) ii) (sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5)) iii) (1)/(3sqrt(2)-2sqrt(3))

Simplify : (3sqrt(2))/(sqrt(6)-sqrt(3))-(4sqrt(3))/(sqrt(6)-sqrt(2))+(2sqrt(3))/(sqrt(6)+2)

(3sqrt(2))/(sqrt(6)-sqrt(3))-(4sqrt(3))/(sqrt(6)-sqrt(2))-(6)/(sqrt(8)-sqrt(12))=? a.sqrt(3)-sqrt(2)b*sqrt(3)+sqrt(2)c.5sqrt(3)d.1

(3sqrt(2))/(sqrt(3)+sqrt(6))-(4sqrt(3))/(sqrt(6)+sqrt(2))+(sqrt(6))/(sqrt(3)+sqrt(2))

(3sqrt(2))/(sqrt(6)-sqrt(3))+(2sqrt(3))/(sqrt(6)+2)-(4sqrt(3))/(sqrt(6)-sqrt(2))

If (5+2sqrt(3))/(7+4sqrt(3))=a+bsqrt(3) , then a=-11 , b=-6 (b) a=-11 , b=6 (c) a=11 , b=-6 (d) a=6, b=11

The point on the parabola y^(2) = 8x at which the normal is inclined at 60^(@) to the x-axis has the co-ordinates as (a) (6,-4sqrt(3)) (b) (6,4sqrt(3)) (c) (-6,-4sqrt(3)) (d) (-6,4sqrt(3))