Home
Class 11
MATHS
Find the value of cos((2pi)/7)+cos((4pi)...

Find the value of `cos((2pi)/7)+cos((4pi)/7)+cos((6pi)/7)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) \), we can follow these steps: ### Step 1: Multiply and Divide by \( 2\sin\left(\frac{\pi}{7}\right) \) We start by multiplying and dividing the expression by \( 2\sin\left(\frac{\pi}{7}\right) \): \[ \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) = \frac{1}{2\sin\left(\frac{\pi}{7}\right)} \cdot \left( 2\sin\left(\frac{\pi}{7}\right) \cos\left(\frac{2\pi}{7}\right) + 2\sin\left(\frac{\pi}{7}\right) \cos\left(\frac{4\pi}{7}\right) + 2\sin\left(\frac{\pi}{7}\right) \cos\left(\frac{6\pi}{7}\right) \right) \] ### Step 2: Use the Formula for \( 2\sin A \cos B \) Using the identity \( 2\sin A \cos B = \sin(A+B) + \sin(A-B) \): \[ = \frac{1}{2\sin\left(\frac{\pi}{7}\right)} \left( \sin\left(\frac{3\pi}{7}\right) + \sin\left(-\frac{\pi}{7}\right) + \sin\left(\frac{5\pi}{7}\right) + \sin\left(-\frac{3\pi}{7}\right) + \sin\left(\pi\right) + \sin\left(-\frac{5\pi}{7}\right) \right) \] ### Step 3: Simplify Using the Identity \( \sin(-\theta) = -\sin(\theta) \) Applying the identity \( \sin(-\theta) = -\sin(\theta) \): \[ = \frac{1}{2\sin\left(\frac{\pi}{7}\right)} \left( \sin\left(\frac{3\pi}{7}\right) - \sin\left(\frac{\pi}{7}\right) + \sin\left(\frac{5\pi}{7}\right) - \sin\left(\frac{3\pi}{7}\right) + 0 - \sin\left(\frac{5\pi}{7}\right) \right) \] ### Step 4: Cancel Out Terms Notice that \( \sin\left(\frac{3\pi}{7}\right) \) and \( -\sin\left(\frac{3\pi}{7}\right) \) cancel out, as do \( \sin\left(\frac{5\pi}{7}\right) \) and \( -\sin\left(\frac{5\pi}{7}\right) \): \[ = \frac{1}{2\sin\left(\frac{\pi}{7}\right)} \left( -\sin\left(\frac{\pi}{7}\right) \right) \] ### Step 5: Final Simplification This simplifies to: \[ = -\frac{1}{2} \] Thus, the value of \( \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) \) is: \[ \boxed{-\frac{1}{2}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • STRAIGHT LINES

    CENGAGE|Exercise Solved Examples And Exercises|482 Videos

Similar Questions

Explore conceptually related problems

Find the value of (cos(2 pi))/(7)(cos(4 pi))/(7)(cos(6 pi))/(7)

If the value of cos((2 pi)/(7))+cos((4 pi)/(7))+cos((6 pi)/(7))+cos((7(pi)/(7)))=-(l)/(2) Find the value of l

Knowledge Check

  • The value of "cos"(2pi)/(7)+"cos"(4pi)/(7)+"cos"(6pi)/(7)+"cos"(7pi)/(7) is

    A
    1
    B
    `-1`
    C
    `1//2`
    D
    `-3//2`
  • (cos2pi)/(7)+(cos4pi)/(7)+(cos6pi)/(7)=?

    A
    `(1)/(2)`
    B
    0
    C
    `-(1)/(2)`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    the value of (cos pi)/(7)cos(2(pi)/(7))cos(3(pi)/(7)) is

    Prove that cos((2pi)/7) cos((4pi)/7) cos((8pi)/7) =1/8

    The value of cos((pi)/(7))+cos((2 pi)/(7))+cos((3 pi)/(7))+cos((4 pi)/(7))+cos((5 pi)/(7))+cos((6 pi)/(7))+cos((7 pi)/(7)) is 1(b)-1(c)0(d) none of these

    Prove that cos((2pi)/7)cos((4pi)/7)cos((8pi)/7)=1/8

    the value of cos0+cos((pi)/(7))+cos(2(pi)/(7))+cos(3(pi)/(7))+cos(4(pi)/(7))+cos(5(pi)/(7))cos(6(pi)/(7)) is (i) (1)/(2)(ii)-(1)/(2)(iii)0(iv)1

    Find the value of 2cos^(3)((pi)/(7))-cos^(2)((pi)/(7))-cos((pi)/(7))