Home
Class 11
MATHS
Prove that 2sin2^0+4sin4^0+6"sin"6^0+......

Prove that `2sin2^0+4sin4^0+6"sin"6^0+.......+180sin180^0=90cot1^0dot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2sin2^(@)+4sin4^(@)+6sin6^(@)+...+180sin180^(@)=90cot1^(@)

Prove that 2 sin 2^(@)+4sin 4^(@)+6sin 6^(@)+........+180sin 180^(@)=90 cot 10^(@) .

The average value of sin2^@,sin4^@, sin6^@.........sin180^@ is (i) 1/90 cos1^0 (ii) 1/90 sin1^0 (iii) 1/90cot1^0 (iv) none of these

Evaluate: sin(2\ sin^(-1)0. 6)

Solve sin2x-sin4x+sin6x=0

The arithmetic mean of the numbers 2sin2^(@), 4sin4^(@), 6 sin 6^(@), …………. 178 sin 178^(@), 180 sin 180^(@)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that int_0^pi x sin^6xcos^4xdx=pi/2 int_0^pi sin^6xcos^4xdx

" Prove that "(cos9^(0)+sin9^(0))/(cos9^(0)-sin9^(0))=cot36^(@)