Home
Class 11
MATHS
In triangle ABC, prove that sin(B+C-A)+...

In triangle ABC, prove that `sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin Asin Bsin Cdot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC, prove that sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin A sin B sin C .

In any triangle ABC,prove that a sin (B-C)+b sin(C-A)+c sin(A-B)=0

In any triangle ABC, prove that: a sin(B-C)+bs in(C-A)+c sin(A-B)=0

In any triangle ABC , prove that a sin A-b sin B -=c sin (A-B) .

In a triangle ABC, prove b sin B-c sin C=a sin(B-C)

If A+B+C =pi , prove that sin 2A+sin 2B+sin 2C=4 sin Asin B sin C.

In triangle ABC , prove that b^2sin2C+c^2sin2B=2bcsinA .

In any triangle ABC, prove that following: b sin B-C sin C=a sin(B-C)

If A+B+C=pi , prove that sin 2A-sin 2B+sin 2C=4cos Asin B cos C.

In triangle ABC , prove that (sin(A-B))/(sin(A+B))=(a^2-b^2)/(c^2) .