Home
Class 11
MATHS
" If "f(x)=(e^(2x)-(1+4x)^(1/2))/(ln(1-x...

" If "f(x)=(e^(2x)-(1+4x)^(1/2))/(ln(1-x^(2)))" for "x!=0" then "f" has "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log((1+x)/(1-x))f(2(x)/(1+x^(2)))=2f(x)

If f(x) is continuous at x=0 , where f(x)=((4^(sin x)-1)^(2))/(x log (1+2x)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(log(1+x+x^(2))+log(1-x+x^(2)))/(sin x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)={:{(((e^(x)-1)^(4))/(sin(x^(2)/k^(2))log(1+ x^(2)/(2)))", for " x!=0),(8", for " x=0):} , then k=

f (x) = (e^(1//x^(2)))/(e^(1//x^(2))-1) , x ne 0, f (0) = 1 then f at x = 0 is

Let f(x) = ((e^(x) -1)^(2))/(sin((x)/(a))log(1+(x)/(4))) for x ne 0 and f(0) = 12. If f is continuous at x = 0, then find a

If f(x) is continuous at x=0 , where f(x)=(log(1+x^(2))-log(1-x^(2)))/(sec x- cos x) , for x !=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(log(1+x^(2))-log(1-x^(2)))/(sec x- cos x) , for x !=0 , then f(0)=

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))} , then f'( e )

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))} , then f'( e )