Home
Class 12
MATHS
[" What are mutually perpendicular vecto...

[" What are mutually perpendicular vectors "],[" having magnitudes "1,2,3" respectively,them "],[[bar(a)+bar(b)+bar(c)timesbar(b)-bar(a)bar(c)]=?]

Promotional Banner

Similar Questions

Explore conceptually related problems

IF bar a , bar b , bar c are mutually perpendicular vectors having magnitudes 1,2,3 respectively then [ bar a + bar b + bar c " " bar b - bar a " " bar c ]=?

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

If bar(a),bar(b),bar (c ) are pair wise mutually perpendicular vectors of equal magnitude , then the angle wisv bar(a)+bar(b)+bar (c ) is

Let bar(a),bar(b),bar(c) are three vectors of magnitudes 1,(1)/(sqrt(2)),sqrt(2) respectively,satisfying [bar(a)bar(c)bar(c)]=1 value of (2bar(a)+bar(b)+bar(c))*(bar(a)xxbar(c))xx(bar(a)-bar(c))+bar(b)) is

Let bar(a),bar(b) and bar(c) be three vectors having magnitudes 1,1 and 2 respectively. If bar(a)times(bar(a)times bar(c))-bar(b)=0 then the acute angle between bar(a) and bar(c) is

Let bar(a) , bar(b) and bar(c) be vectors with magnitudes 3,4 and 5 respectively and bar(a)+bar(b)+bar(c)=0 then the value of bar(a).bar(b)+bar(b).bar(c)+bar(c).bar(a) is

bar(a),bar(b),bar(c) represent three concurrent edges of a rectangular parallelepiped whose lengths are 4,3 ,2 units respectively then find value of (bar(a)+bar(b)+bar(c))*(bar(a)timesbar(b)+bar(b)timesbar(c)+bar(c)timesbar(a))

If bar(a), bar(b), bar(c) are non-coplanar vectors and x, y, z are scalars such that bar(a)=x(bar(b)timesbar(c))+y(bar(c)timesbar(a))+z(bar(a)timesbar(b)) then x =

If a and b are unit vectors such that |bar(a)timesbar(b)|=bar(a)*bar(b) then |bar(a)-bar(b)|^(2)=

If a,b and c are mutually perpendicular vectors,thenprove that [bar(a)bar(b)bar(c)]^(2)=a^(2)b^(2)c^(2)