Home
Class 11
MATHS
For any positive integer (m,n) (with nge...

For any positive integer (m,n) (with `ngeqm`), Let `((n),(m)) =.^nC_m` Prove that `((n),(m)) + 2((n-1),(m))+3((n-2),(m))+....+(n-m+1)((m),(m))`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any positive integer (m,n) (with n>=m), Let ([nm])=.^(n)C_(m) Prove that ([nm])+2([n-1m])+3([n-2m])+...+(n-m+1)([mm])

Prove that mC_(1)^(n)C_(m)-^(m)C_(2)^(2n)C_(m)+^(m)C_(3)^(3n)C_(m)-...=(-1)^(m-1)n^(m)

If n is a positive integer, then (a+ib)^(m//n)+(a-ib)^(m//n)

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=[pi/4; m^(2)/n^(2) > -1

If a ,\ m ,\ n are positive integers, then {root(m)root (n)a}^(m n) is equal to (a) a^(m n) (b) a (c) a^(m/n) (d) 1

Prove that ^mC_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-.....=(-1)^(m-1)n^mdot

For as Ap. S_(n)= m and S_(m) = n . Prove that S_(m+n)=-(m+n).(m ne n)

If n and m (ltn) are two positive integers then n(n-1)(n-2)...(n-m) =