Home
Class 10
MATHS
(1)/(x-3)+(2)/(x-2)=(8)/(x),x!=0,2,3...

(1)/(x-3)+(2)/(x-2)=(8)/(x),x!=0,2,3

Promotional Banner

Similar Questions

Explore conceptually related problems

(7)/((x-2)(x-3))+(8)/(x-3)+1<0

(x+1)(x+2)(x+3)(x^(2)4x+8)(x-2)=0, then x belongs to

Which of the following are quadratic equations in x? (i)" "x^(2)-x+3=0" "(ii)" "2x^(2)+(5)/(2)x-sqrt(3)=0 (iii)" "sqrt(2)x^(2)+7x+5sqrt(2)=0" "(iv)" "(1)/(3)x^(2)+(1)/(5)x-2=0 (v)" "x^(2)-3x-sqrt(x)+4=0" "(vi)x-(6)/(x)=3 (vii)" "x+(2)/(x)=x^(2)" "(viii)" "x^(2)-(1)/(x^(2))=5 (ix)" "(x+2)^(3)=x^(3)-8" "(x)" "(2x+3)(3x+2)=6(x-1)(x-2) (xi) " "(x+(1)/(x))^(2)=2(x+(1)/(x))+3

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

If x^(2)+3x+1=0 then find x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4)),x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))

Solve the inequality if f(x)=((x-2)^(10)(x+1)^(3)(x-((1)/(2)))^(5)(x+8)^(2))/(x^(24)(x-3)^(3)(x+2)^(5))is>0 or <0

Check whether the following are quadratic equations : (1) (x-2)^(2)+1=2x-3 (2) x(x+1)=8=(x+2)(x-2) (3) x(2x+3)=x^(2)+1 (4) (x+2)^(3) = x^(3)-4

Take away ((8)/(5)x^(2) - (2)/(3)x^(3) + (3)/(2)x -1) from ((x^(3))/(5) - (3)/(2)x^(2) + (2)/(3)x + (1)/(4))