Home
Class 11
MATHS
If log10(2),log10(2^x+1),log10(2^x-3) ar...

If `log_10(2),log_10(2^x+1),log_10(2^x-3)` are in A.P then x is equal to (i) `log_2(5)` (ii) `log_2(-1)` (iii) `log_2(1/5)` (iv) `log_5(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_10 2, log_10(2^x- 1) and log_10(2^x+3) are in A.P., then find the value of x.

If log_(10) 2, log_(10)(2^(x) -1) , log_(10)(2^(x)+3) are in AP, then what is x equal to?

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-7/2) are in A.P., then x is equal to

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-7/2) are in A.P., then x is equal to

If log_(10)2,log_(10)(2^(x)-1) and log_(10)(2^(x)+3) are in A.P then the value of x is

If log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1) and 1 are in A.P,then x equals

If log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1) and 1 are in A.P,then x equals

If log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1) and 1 are in A.P,then x equals

If log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1) and 1 are in A.P,then x equals