Home
Class 11
MATHS
Prove that (cosA-cosB)^2+(sin A-sin B)^2...

Prove that `(cosA-cosB)^2+(sin A-sin B)^2=4sin^2((A-B)/2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (cosA-cosB)^(2)+(sinA-sinB)^(2)=4sin^(2)(A-B)/(2)

to prove that (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)((A-B)/(2))

Prove that: (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)backslash(A-B)/(2)

Prove that: (cos A+cos B)^(2)+(sin A-sin B)^(2)=4cos^(2)((A+B)/(2))

Prove that: (cos A+cos B)^(2)+(sin A+sin B)^(2)=4cos^(2)backslash(A-B)/(2)

Prove that, (cos A + cos B)^(2)+(sin A + sin B)^(2)=4cos^ (2)((A-B)/(2))

Prove that (sin^Acos^B-cos^2Asin^2B)=(sin^2A-sin^2B)

Prove that sin(A+B)sin(A-B) = sin^(2)A-sin^(2)B

Prove that sin(A+B)sin(A-B) = sin^(2)A-sin^(2)B

If A+B+C=pi then prove that cos A+cos B+cos C=1+4sin((A)/(2))*sin((B)/(2))*sin((C)/(2))