Home
Class 11
MATHS
Let f(x)=2 cosec 2x + sec x+cosec x, the...

Let `f(x)=2 cosec 2x + sec x+cosec x`, then the minimum value of `f(x)` for `x in (0,pi/2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=2cos ec2x+sec x+cos ecx, then the minimum value of f(x) for x in(0,(pi)/(2)) is

IF f(x)= sin^2 x + cosec ^2 x , then the minimum value of f(x) is

If f(x) = 2cosec2x + secx + cosecx then in (0,pi/2)

If 0 lt x lt pi/2 and sec x = cosec y , then the value of sin (x + y) is

The function f(x)=cosec x is

If 0ltxlt(pi)/(2) , then the minimum value of 2(sinx+cosx+cosec 2x)^3 is

tan^2x + cot^2 x +2=sec^2 x cosec^2 x

If 4 sin^(2) x + cosec^(2)x, a , sin^(2)y+4 cosec^(2)y are in AP, then minimum value of (2a) is

If f(x) = sec 2x + cosec 2x, then f(x) is discontinuous at all points in

Let f(x)= cosec 2x + cosec 2^2 x+ cosec 2^3 x+........+ cosec 2^n ,x in (0,pi/2) and g(x)=f(x)+cot 2^n x . If H(x)={ (cosx)^(g(x))+(sec)^(cisecx) if x lt 0 and p if x=0 and (e^x+e^(-x)-2cosx)/(x sin x) If x lt o .Find the value of p, if possible to make the functieIf H(x) continuous at x = 0.