Home
Class 9
MATHS
(3a-7b-1)^(n)...

(3a-7b-1)^(n)

Promotional Banner

Similar Questions

Explore conceptually related problems

If the 7th and 8th term of the binomial expansion (2a - 3b)^(n) are equal, then (2a +3b)/(2a-3b) is equal to a) (13-n)/-(n+1) b) (n+1)/(13-n) c) (6-n)/(13-n) d) (n-1)/(13-n)

If (3a+7b)/(3a-7b)=(4)/(3) then find the value of the ratio (3a^(2)-7b^(2))/(3a^(2)+7b^(2))

Compute the division : (a^(3^n)-b^(3^n))/(a^(3^(n-1))-b^(3^(n-1))) .

If (3a+7b)/(3a-7b)= 4/3 then find the value of the ratios (3a^2-7b^2)/(3a^2+7b^2)

(2.3^(n+1)+7.3^(n-1))/(3^(n+1)-2((1)/(3))^(1-n))=

By the principle of mathematical induction prove that the following statements are true for all natural numbers 'n' (a) (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+......+(1)/((2n-1)(2n+1)) =(n)/(2n+1) (b) (1)/(1.4)+(1)/(4.7)+(1)/(7.10)+......+(1)/((3n-2)(3n+1)) =(n)/(3n+1)

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.4)+ (1)/(4.7)+(1)/(7.10)+...+ (1)/((3n-2)(3n+1))= (n)/(3n+1)

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.4)+ (1)/(4.7)+(1)/(7.10)+...+ (1)/((3n-2)(3n+1))= (n)/(3n+1)