Home
Class 12
MATHS
y=sec^(-1)((1)/(2x^(2)-1))*0<x<(1)/(sqrt...

y=sec^(-1)((1)/(2x^(2)-1))*0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = sec^(-1) ((1)/(2x^(2) -1)) " then " (dy)/(dx) = ?

The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2))" at "x=0 , is

The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2))" at "x=0 , is

Derivative of y = "sec"^(-1)(1/(2x^2 - 1)) is

Derivative of y=sec^-1(1/(2x^2-1)) is

Differentiate sec^(-1)(1/(2x^2-1)),\ 0

If y=sin^(-1)((2x)/(1+x^(2)))+sec^(-1)((1+x^(2))/(1-x^(2))),0

If y = sec^-1(1/(2x^2-1)) , then find dy/dx , given 0 < x < 1/sqrt2

If z=sec^(-1)(x+(1)/(x))+sec^(-1)(y+(1)/(y)) where xy<0, then the possible value of z is (are)

If y=tan^(-1)((2y)/(1-x^(2)))+sec^(-1)((1+x^(2))/(1-x^(2)))x>0, prove that (dy)/(dx)=(4)/(1+x^(2))