Home
Class 12
MATHS
Let K=sum(r=1)^(n)(1)/(r sqrt(r+1)+(r+1)...

Let `K=sum_(r=1)^(n)(1)/(r sqrt(r+1)+(r+1)sqrt(r))` and `[x]` denotes greatest integer function less than or equal to `x` then `[K]`

Promotional Banner

Similar Questions

Explore conceptually related problems

m sum_(r=1)^(n)(1)/(n)sqrt((n+r)/(n-r))

Let S=sum_(r=1)^(117)(1)/(2[sqrt(r)]+1) where [.) denotes the greatest integer function.The value of S is

If x=10 sum_(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] denotes gratest integer function)

Let R=(2+sqrt(3))^(2n) and f=R-[R] where [ denotes the greatest integer function,then R(1-f) is equal to

Evaluate lim_(n rarr oo)[sum_(r=1)^(n)(1)/(2^(r))], where [.] denotes the greatest integer function.

The value of sum_(r=1)^(1024)[log_(2)r] is equal to,(I.] denotes the greatest integer function)

If R = (sqrt(2) + 1)^(2n+1) and f = R - [R] , where [ ] denote the greatest integer function, then [R] equal

The value of sum_(r=1)^(n)(1)/(sqrt(a+rx)+sqrt(a+(r-1)x)) is -