Home
Class 12
MATHS
If [x] denotes the greatest integer le...

If `[x]` denotes the greatest integer `leq x and f(x)=1/([x])+sqrt((2-x)x)`, then the domain of `f` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If [x] denotes the greatest integer le x and f(x)=(1)/([x])+sqrt((2-x)x) , then domain of f is :

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If [x] denotes the greatest integer le x , then domain of f(x) = 1/sqrt([x]^(2) -7[x] + 12) is

If [.] denotes the greatest integer function and {.} denotes the fractional part,then the domain of the function f(x)=sqrt((x-1)/(x-{x}))+ln(3-[x+[2x]]) is

If [1 denotes the greatest integer and {} denotes the fractional part,then the domain of the real valued function f(x)=(f(x))/(sqrt(1000x^(2)-999(x)^(3)-990(x)^(2)-50x+60)) is

f(x)= 1/sqrt([x]-x) , where [*] denotes the greatest integeral function less than or equals to x. Then, find the domain of f(x).

f(x)= 1/sqrt([x]-x) , where [*] denotes the greatest integeral function less than or equals to x. Then, find the domain of f(x).

f(x)= 1/sqrt([x]-x) , where [*] denotes the greatest integeral function less than or equals to x. Then, find the domain of f(x).

f(x)= 1/sqrt([x]+x) , where [*] denotes the greatest integeral function less than or equals to x. Then, find the domain of f(x).