Home
Class 12
MATHS
Let [x] denote the greatest integer le...

Let `[x]` denote the greatest integer `leq x`. The domain of definition of function `f(x)=sqrt((4-x^2)/([x]+2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If [x] denotes the greatest integer lt x then the domain of the function function f(x) =sqrt((4-x^2)/([x]+2)) is

If [x] denotes the greatest integer function, then the domain of the function f(x)=sqrt((x-[x])/(log (x^(2)-x))) is

If [x] denotes the greatest integer le x , then domain of f(x) = 1/sqrt([x]^(2) -7[x] + 12) is

If [.] denotes the greatest integer function then the domain of the real-valued function log[x+(1)/(2)]|x^(2)-x-2| is

Let f(x)=min{x-[x|,-[-x)],-2lt=xlt=2,g(x)=|2-|x-2||,-2lt=xlt=2 and h(x)=(|sinx|)/sinx,-2 leq x leq2 and x != 0 be three given functions where [x] denotes the greatest integer leq x Then The number of solution(s) of the equation x^2+(f(x^))^2=1(-1 leq x leq 1) is/are