Home
Class 12
MATHS
If y=(x^4+x^2+1)/(x^2+x+1) then (dy)/(dx...

If `y=(x^4+x^2+1)/(x^2+x+1)` then `(dy)/(dx)=a x+b` , find `a` and `b`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(x^(4)+x^(2)+1)/(x^(2)+x+1) then (dy)/(dx)=ax+b, find a and b

If y=(x^(4)+x^(2)+1)/(x^(2)+x+1) find (dy)/(dx) =

If y=[(x^2+1)/(x+1)] , then find (dy)/(dx) .

If y=[(x^2+1)/(x+1)] , then find (dy)/(dx) .

If y=[(x^(2)+1)/(x+1)] , then find (dy)/(dx) .

If y = (x^4 - x^2 + 1)/(x^2 + sqrt(3)x + 1) and (dy)/(dx) = ax + b , then the value of a - b is

If y = (x^(4)-x^(2)+1)/(x^(2)+sqrt(3)x+1) and (dy)/(dx)=ax+b , then a - b = ?

If y=(1)/(x^(4)+x^(2)+1) , then find dy/dx

If y^2=a x^2+b x+c , then find (dy)/(dx)

If y = x^4 + x^2 , find (dy)/(dx) at x = 1 ?