Home
Class 9
MATHS
(1)/(sqrt(2)+sqrt(3)+sqrt(10))...

(1)/(sqrt(2)+sqrt(3)+sqrt(10))

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))

(1)/(sqrt(2)+sqrt(3))-(sqrt(3)+1)/(2+sqrt(3))+(sqrt(2)+1)/(2+2sqrt(2))

1/(sqrt(2)+sqrt(3)+sqrt(5))+1/(sqrt(2)+sqrt(3)-sqrt(5))

The value of (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))+........+(1)/(sqrt(8) + sqrt(9)) is

Let S=(sqrt(1))/(1+sqrt1+sqrt(2))+sqrt(2)/(1+sqrt(2)+sqrt(3))+(sqrt(3))/(1+sqrt(3)+sqrt(4))+...+(sqrt(n))/(1+sqrt(n)+(sqrtn+1))=10 Then find the value of n.

Let S=(sqrt(1))/(1+sqrt1+sqrt(2))+sqrt(2)/(1+sqrt(2)+sqrt(3))+(sqrt(3))/(1+sqrt(3)+sqrt(4))+...+(sqrt(n))/(1+sqrt(n)+(sqrtn+1))=10 Then find the value of n.

Let S=(sqrt(1))/(1+sqrt1+sqrt(2))+sqrt(2)/(1+sqrt(2)+sqrt(3))+(sqrt(3))/(1+sqrt(3)+sqrt(4))+...+(sqrt(n))/(1+sqrt(n)+(sqrtn+1))=10 Then find the value of n.

([(sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3))])/([(sqrt(3)+1sqrt(2))+(sqrt(3)-1sqrt(2))])

Find the value to three places of decimals of each of the following.It is given that sqrt(2)=1.414,sqrt(3)=1.732,quad sqrt(5)=2.236 and sqrt(10)=3.162(sqrt(5)+1)/(sqrt(2)) (ii) (sqrt(10)+sqrt(15))/(sqrt(2))

Find the value to three places of decimals of each of the following. It is given that sqrt(2)=1. 414 ,\ \ sqrt(3)=1. 732\ ,\ \ \ sqrt(5)=2. 236 and sqrt(10)\ =\ \ 3. 162 i) (sqrt(5)+1)/(sqrt(2)) (ii) (sqrt(10)+\ sqrt(15))/(sqrt(2))