Home
Class 12
MATHS
cos^(-1)x+sin^(-1)(x)/(2)=(pi)/(6)...

cos^(-1)x+sin^(-1)(x)/(2)=(pi)/(6)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : cos^(-1) (sin cos^(-1)x ) =(pi)/(6) .

Prove that the identities,sin^(-1)cos(sin^(-1)x)+cos^(-1)sin(cos^(-1)x)=(pi)/(2)|x|<=1

The soluation set of inequality (sin x+cos^(-1)x)-(cos x-sin^(-1)x)>=(pi)/(2) is equal to

Find the value of cos(2cos^(-1)x+sin^(-1)x) at x=(1)/(5), where 0<=pi and -(pi)/(2)<=sin^(-1)x<=(pi)/(2)

If sin^(-1)x+sin^(-1)y=(pi)/(3) and cos^(-1)x+cos^(-1)y=(pi)/(6), find the values of x and y.

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

prove that , sin ^(-1) cos sin ^(-1 )x+cos ^(-1) sin cos ^(-1) ""x=(pi)/(2)

Solve : sin ^(-1)x - cos ^(-1) x = (pi )/(6)