Home
Class 11
MATHS
If 0ltalphaltpi/2 and sinalpha+cosbeta+t...

If `0ltalphaltpi/2` and `sinalpha+cosbeta+tanalpha+cotalpha+secalpha+cosecalpha="7,` then prove that `sin2alpha` is a root of the equation `x^2-44x+36=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sinalpha+cosalpha)(tanalpha+cotalpha)=secalpha+"cosec"alpha

If 0

If 0ltalphaltpi/2, show that alpha- alpha^3/3ltsinalpha

If sinalpha+sinbeta=a and coslapha+cosbeta=b then prove that sin(alpha+beta)=(2ab)/(a^2+b^2)

If sin alpha sin beta-cos alpha cos beta+1=0 , then prove that 1+cotalpha tan beta=0 .

If alpha is an acute angle and 2sinalpha+15cos^(2)alpha=7 then the value of cotalpha is

(sinalpha+secalpha)^(2)+(cosalpha+cosecalpha)^(2)=(K+secalphacosecalpha)^(2) , then K = ?

If sin alpha,cos alpha are the roots of the equation x^(2)+bx+c=0(c!=0), then

Find the roots of the following equation x^2 + 12 x - 36 = 0

If secalpha, "cosec"alpha are roots of equation x^(2) + px + q=0 , then