Home
Class 13
MATHS
(a+b)^(2)=a^(2)+2ab+b^(2)...

(a+b)^(2)=a^(2)+2ab+b^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2))|=-(a^(3)+b^(3))^(2) .

Using properties of determinants prove that |(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2))|=-(a^(3)+b^(3))^(2) .

If vec a and vec b are two vectors,then prove that (vec a xxvec b)^(2)=a^(2)b^(2)-(a.b)^(2)

( a - b) ^(2) + 2ab = ? A. a^(2) - b^(2) B. a^(2) + b^(2) C. a^(2) - 4ab + b^(2) D. a^(2) - 2ab + b^(2)

If a =0, b =3, find the value of frac(a^2+2ab+b^2)(a^2 -2ab + b^2)

(5x + 2y) ( 5x - 2y) can be simplified using the identity. a. (x +b) ^(2) = a ^(2) + 2 ab + b ^(2) b. (x -b) ^(2) = a ^(2) - 2 ab + b ^(2) c. (a +b)(a -b) = a ^(2) - b ^(2) d. none

Simplify : 6a^(2)+3ab+5b^(2)-2ab-b^(2)+2a^(2)+4ab+2b^(2)-a^(2) .

Remove the brackets and simplify : (a^(2)+b^(2) +2ab) -(a^(2)+b^(2)- 2ab)