Home
Class 11
MATHS
lim(n rarr oo)(cos(x)/(2)cos(x)/(4)cos(x...

lim_(n rarr oo)(cos(x)/(2)cos(x)/(4)cos(x)/(8)-cos(x)/(2^(n)))=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

lim_(x rarr oo)((cos x)/x)

Evaluate :lim_(n rarr oo)(cos((x)/(2))cos((x)/(2^(2)))cos((x)/(2^(3)))......cos((x)/(2^(n))))

The value of lim_(nrarroo)(cos x cos .(x)/(2)cos.(x)/(4)..cos .(x)/(2^(n))) is equal to

Evaluate lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))} .

Evaluate lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))} .

Evaluate ("lim")_(nvecoo){cos(x/2)cos(x/4)cos(x/8) cos(x/(2^n))}

Evaluate ("lim")_(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

Lim_(x to 0){"cos"((x)/(2))cos((x)/(4))cos((x)/(8))....cos((x)/(2^(n)))}=