Home
Class 8
MATHS
" 9."(x-5)/(2)-(x-3)/(5)=(1)/(2)...

" 9."(x-5)/(2)-(x-3)/(5)=(1)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

(x-1)/(3)+(2x+5)/(6)=(3x-6)/(9)-(2x-5)/(2)

If 5(tan^(2)x-cos^(2)x)=2cos2x+9, then the value of cos4x is: (2)/(9)(2)-(7)/(9)(3)-(3)/(5)(4)(1)/(3)

Simplify: ((13)/(9)x(-15)/(2))+((7)/(3)x(8)/(5))+((3)/(5)x(1)/(2))

Simplify :((-3)/(2)x(4)/(5))+((9)/(5)x(-10)/(3))-((1)/(2)x(3)/(4))

(5x)/(3)-(x-2)/(3)=(9)/(4)-(1)/(2)(x-(2x-1)/(3))

Simplify: ((1)/(4)x(2)/(7))-((5)/(14)x(-2)/(3))+((3)/(7)x(9)/(2))

The integral int(2x^(12)+5x^(9))/([x^(5)+x^(3)+1]^(3))*dx is equal to- (A) (x^(10))/(2(x^(5)+x^(3)+1)^(2))(B)(x^(5))/(2(x^(5)+x^(3)+1)^(2))(C)-(x^(10))/(2(x^(5)+x^(3)+1)^(2))(D)-(x^(5))/(2(x^(5)+x^(3)+1)^(2))

Statemenr I: If (3x+2)/(5)=(4x-7)/(6) thenx =23(1)/(2) Statement II: If 5(2x-9)/(3)8=2x then x=69/5

(1) / (2x-3) + (1) / (x-5) = 1 (1) / (9)

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to: (1)(-x^(5))/((x^(5)+x^(3)+1)^(2))+C(2)(x^(5)x^(3))/(2(x^(5)+x^(3)+1)^(2))+C(3)(x^(5))/(2(x^(5)+x^(3)+1)^(2))+C(4)(-x^(3)+x^(3))/(2(x^(5)+x^(3)+1)^(2))+C where C is an arbitrary constant.