Home
Class 11
MATHS
Given alpha+beta-gamma=pi, prove that s...

Given `alpha+beta-gamma=pi,` prove that `sin^2alpha+sin^2beta-sin^2gamma=2sinalphasinbetacosgammadot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given alpha+beta-gamma=pi, prove that sin^(2)alpha+sin^(2)beta-sin^(2)gamma=2sin alpha sin beta cos gamma

If alpha + beta+gamma=pi , prove that sin^2 alpha + sin^ beta - sin^2 gamma = 2sinalpha sinbeta cosgamma

If alpha + beta- gamma= pi , prove that sin^(2)alpha + sin^(2)beta - sin^(2)gamma = 2sin alpha sin beta cos gamma .

If alpha+beta-gamma=pi, and sin^(2)alpha+sin^(2)beta-sin^(2)gamma=lambda s in alpha s in beta cos gamma then write the value of lambda

If alpha+beta-gamma=pi , then sin^(2)alpha=sin^(2)beta-sin^(2)gamma is equal to

If alpha,beta,gamma,in(0,(pi)/(2)), then prove that (si(alpha+beta+gamma))/(sin alpha+sin beta+sin gamma)<1

if cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma then prove that cos2 alpha+cos2 beta+cos2 gamma=sin2 alpha+sin2 beta+sin2 gamma=0