Home
Class 12
MATHS
Given Sn = sum(r = 0)^n \ 1/2^r, S = sum...

Given `S_n = sum_(r = 0)^n \ 1/2^r`, `S = sum_(r = 0)^oo \ 1/2^r`. If `S - S_n < 1/1000`, then least value of 'n' (A) 8 (B) 9 (C) 10 (D) 11

Promotional Banner

Similar Questions

Explore conceptually related problems

If S_n=sum_(r=0)^n 1/(nC_r) and t_n=sum_(r=0)^n r/(nC_r), then t_n/S_n=

If s_n= sum_(r=0)^n 1/(^"nC_r) and t_n=sum_(r=0)^n r/("^nC_r) then t_n/s_n is equal to

If s_(n) = sum_(r = 0)^(n) 1/(""^(n)C_(r)) and t_(n) = sum _(r = 0)^(n) r/(""^(n)C_(r)) ,then t_(n)/s_(n) is equal to

Let n in N, S_n=sum_(r=0)^(3n)^(3n)C_r and T_n=sum_(r=0)^n^(3n)C_(3r) , then |S_n-3T_n| equals

Let n in N, S_n=sum_(r=0)^(3n)^(3n)C_r and T_n=sum_(r=0)^n^(3n)C_(3r), then |S_n-3T_n| equals

If S_(1)= sum_(r=1)^(n) r , S_(2) = sum_(r=1)^(n) r^(2),S_(3) = sum_(r=1)^(n)r^(3) then : lim_(n to oo ) (S_(1)(1+(S_(8))/8))/((S_(2))^(2)) =

If s_n=sum_(r=0)^n1/(""^nC_r)and t_n=sum_(r=0)^nr/(""^nC_r), then t_n/s_n is equal to :

Let T_(n) = sum_(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S_(n) = sum_(r=0)^(n)(n)/(r^(2)-2r.n+2n^(2)) then