Home
Class 12
MATHS
Let A={a1,a2,a3,.....} and B={b1,b2,b3,....

Let `A={a_1,a_2,a_3,.....} and B={b_1,b_2,b_3,.....}` are arithmetic sequences such that `a_1=b_1!=0, a_2=2b_2 and sum_(i=1)^10 a_i=sum_(i=1)^15 b_j ,` If `(a_2-a_1)/(b_2-b_1)=p/q` where p and q are coprime then find the value of `(p+q).`

Promotional Banner

Similar Questions

Explore conceptually related problems

In direct proportion a_1/b_1 = a_2/b_2

If the points ( a_1,b_1),(a_2,b_2) and (a_1+a_2,b_1+b_2) are collinear ,show that a_1b_2=a_2b_1 .

If the points (a_1, b_1),\ \ (a_2, b_2) and (a_1+a_2,\ b_1+b_2) are collinear, show that a_1b_2=a_2b_1 .

If the points (a_1, b_1),\ \ (a_2, b_2) and (a_1+a_2,\ b_1+b_2) are collinear, show that a_1b_2=a_2b_1 .

IF x ne y and the sequence x,a,a,y and x_1,b_1,b_2,y each are in A.P., then find the value of (a_2-a_1)/(b_2-b_1) =.....

a_1,a_2,a_3 ,…., a_n from an A.P. Then the sum sum_(i=1)^10 (a_i a_(i+1)a_(i+2))/(a_i + a_(i+2)) where a_1=1 and a_2=2 is :

Let a_1,a_2,a_3 ….and b_1 , b_2 , b_3 … be two geometric progressions with a_1= 2 sqrt(3) and b_1= 52/9 sqrt(3) If 3a_99b_99=104 then find the value of a_1 b_1+ a_2 b_2+…+a_nb_n