Home
Class 12
MATHS
" (vi) "f(x)={[(|x^(2)-1|)/(x-1),," for ...

" (vi) "f(x)={[(|x^(2)-1|)/(x-1),," for "x!=1],[2,," for "x=1]" at "x=1

Promotional Banner

Similar Questions

Explore conceptually related problems

A function f(x) is defined by, f(x) = {{:(([x^(2)]-1)/(x^(2)-1)",","for",x^(2) ne 1),(0",","for",x^(2) = 1):} Discuss the continuity of f(x) at x = 1.

A function f(x) is defined by, f(x) = {{:(([x^(2)]-1)/(x^(2)-1)",","for",x^(2) ne 1),(0",","for",x^(2) = 1):} Discuss the continuity of f(x) at x = 1.

A function f(x) is defined by, f(x) = {{:(([x^(2)]-1)/(x^(2)-1)",","for",x^(2) ne 1),(0",","for",x^(2) = 1):} Discuss the continuity of f(x) at x = 1.

A function f(x) is defined by, f(x) = {{:(([x^(2)]-1)/(x^(2)-1)",","for",x^(2) ne 1),(0",","for",x^(2) = 1):} Discuss the continuity of f(x) at x = 1.

If f(x)=(x-1)/(2x^(2)-7x+5) for x!=1 and f(x)=-(1)/(3) for x=1 then f'(1)=

If f(x) = {:{((x -1)/(2x^(2) - 7 x +5) , " for " x ne 1) , (-1/3 , " for " x = 1):} then f' (1) is equal to

If f(x) = {:{((x -1)/(2x^(2) - 7 x +5) , " for " x ne 1) , (-1/3 , " for " x = 1):} then f (1) is equal to

Let f(x) be a function defined as f(x)={(x^2-1)/(x^2-2|x-1|-1),x!=1 {1/2,x=1 Discuss the continuity of the function at x=1.

Let f(x) be a function defined as f(x)={(x^2-1)/(x^2-2|x-1|-1),x!=1 1/2,x=1 Discuss the continuity of the function at x=1.