Home
Class 12
MATHS
Value of L = lim(n->oo) 1/n^4 [1 sum(k=1...

Value of L = `lim_(n->oo) 1/n^4 [1 sum_(k=1)^n k + 2sum_(k=1)^(n-1) k + 3 sum_(k=1)^(n-2) k +.....+n.1]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Value of L = lim_ (n rarr oo) (1) / (n ^ (4)) [1sum_ (k = 1) ^ (n) k + 2sum_ (k = 1) ^ (n-1) k + 3sum_ ( k = 1) ^ (n-2) k + ...... + n.1] is

L = lim_ (n rarr oo) (1) / (n ^ (4)) [1.sum_ (k = 1) ^ (n) k + 2 * sum_ (k = 1) ^ (n-1) k + 3 * sum_ (k = 1) ^ (n-2) k + ......... + n.1]

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

lim_(n rarr oo) 1/n^(3) sum_(k=1)^(n) k^(2)x =

Find the value of sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n k

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is