Home
Class 12
MATHS
If y=tan^(-1)((3x-x^3)/(1-3x^2)),1/(sqrt...

If `y=tan^(-1)((3x-x^3)/(1-3x^2)),1/(sqrt(3))ltxlt1 /(sqrt(3)),` then find `(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((3x-x^(3))/(1-3x^(2))),(1)/(sqrt(3))

y = tan^(-1)((3x-x^3)/(1-3x^2)), 1/(sqrt3) , x , 1/(sqrt3) .

y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))

y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))

Fi nd dy/dx , y=tan^-1[(3x-x^3)/(1-3x^2)],-1/sqrt3ltxlt1/sqrt3

If y=sin^(-1)(6xsqrt(1-9x^(2))),-1/(3sqrt2)ltxlt1/(3sqrt2) , then find (dy)/(dx) .

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .