Home
Class 11
MATHS
[x],[1],[w]...

[x],[1],[w]

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following : [[x+1,omega,omega^2],[omega,x+omega^2,1],[omega^2,1,x+omega]] =0

If omega is a complex cube root of unity then a root of the equation |[x+1,omega,omega^2],[omega,x+omega^2,1],[omega^2,1,x+omega]|=0 is

If omega!=1 is a cube root of unity and x+y+z!=0, then prove that |[x/(1+omega), y/(omega+omega^2),z/(omega^2+1)],[y/(omega+omega^2),z/(omega^2+1),x/(1+omega)],[(z)/(omega^2+1),x/(1+omega),y/(omega+omega^2)]|=0 if x=y=z

If omega!=1 is a cube root of unity and x+y+z!=0, then prove that |[x/(1+omega), y/(omega+omega^2),z/(omega^2+1)],[y/(omega+omega^2),z/(omega^2+1),x/(1+omega)],[(z)/(omega^2+1),x/(1+omega),y/(omega+omega^2)]|=0 if x=y=z

if omega!=1 is cube root of unity and x+y+z != 0 then |[x/(1+omega),y/(omega+omega^2),z/(omega^2+1)],[y/(omega+omega^2),z/(omega^2+1),x/(1+omega)],[z/(omega^2+1),x/(1+omega),y/(omega+omega^2)]| =0 if

if omega!=1 is cube root of unity and x+y+z != 0 then |[x/(1+omega),y/(omega+omega^2),z/(omega^2+1)],[y/(omega+omega^2),z/(omega^2+1),x/(1+omega)],[z/(omega^2+1),x/(1+omega),y/(omega+omega^2)]| =0 if

det[[x+w^(2),w,1w,w^(2),1+x1,x+w,w^(2)]]=0

If w ne 1 is a cube root of unity and Delta=|{:(x+w^(2),w,1),(w,w^(2),1+x),(1,x+w,w^(2)):}|=0 , then value of x is

If w ne 1 is a cube root of unity and Delta=|{:(x+w^(2),w,1),(w,w^(2),1+x),(1,x+w,w^(2)):}|=0 , then value of x is

If w ne 1 is a cube root of unity and Delta=|{:(x+w^(2),w,1),(w,w^(2),1+x),(1,x+w,w^(2)):}|=0 , then value of x is