Home
Class 12
MATHS
cot A+cot B+cot C+(cos(A+B+C))/(sin A si...

cot A+cot B+cot C+(cos(A+B+C))/(sin A sin B sin C)

Promotional Banner

Similar Questions

Explore conceptually related problems

If,A,B,C are angles of a triangle and if none of them is equal to (pi)/(2) ,then tan A+tan B+tan C is cot A cotB cot C tan A tan B tan C sin A sin B sin C cos A cos B cos C

cot A cot B=2,cos(A+B)=(3)/(5)rArr sin A sin B=

If f(theta)=det[[sin^(2)A,cot A,1sin^(2)B,cos B,1sin^(2)B,cos B,1sin^(2)C,cos C,1]], then (a) sin^(2)A+sin B+c(b)cot A cot B cot C(c)sin^(2)A+sin^(2)B+sin^(2)C(d)0

If A,B,C are the angles of a triangle, show that, (iii) (cos A cos C + cos (A + B) cos(B + C))/(cos A sin C - sin (A + B) cos (B + C)) = cot C .

If A + B + C = pi then show that cot theta = cot A + cot B + cot C ⇔ sin(A - theta) * sin(B - theta)* sin(C - theta) = sin3theta .

If A + B + C =pi , prove that : (sin A + sin B +sin C)/(sin A + sin B -sin C)= cot frac (A)(2) cot frac (B)(2) .

If A and B are complementary angles, prove that : cot A cot B - sin A cos B - cos A sin B = 0

a cot A+b cot B+c cot C=

If A +B +C = 90 ^@ then ( cot A+ cot B + cot C) /(cot A cot B cot C ) =