Home
Class 11
MATHS
f^(lan alpha),tan beta" are roots of "ax...

f^(lan alpha),tan beta" are roots of "ax^(2)+bx+c=0" then "

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose 0 lt alpha lt beta, and 2 alpha+ beta = pi //2 . If tan alpha, tan beta are roots of ax^(2) + bx + c = 0 , then

If sec alpha,tan alpha are roots of ax^(2)+bx+c=0 then

If alpha, beta are the roots of ax^(2) + bx + c = 0 , then find the quadratic equation whose roots are alpha + beta, alpha beta .

IF alpha , beta are the roots of ax ^(2) +bx + c =0 then alpha ^2 + beta ^2=

If alpha and beta are roots of ax^(2)+bx+c=0 then the equationnwhose roots are alpha^(2)andbeta^(2) is

If alpha , beta are the roots of ax^2 + bx + c=0 then alpha beta ^(2) + alpha ^2 beta + alpha beta =

If alpha, beta are roots of ax^(2)+bx+c=0 , then : int((x-alpha)(x-beta))/(ax^(2)+bx+c)dx=

If alpha , beta are the roots of ax ^2 + bx +c=0 then alpha ^5 beta ^8 + alpha beta ^5=