Home
Class 11
MATHS
If sinA=sinBa n dcosA=cosB , then prove ...

If `sinA=sinBa n dcosA=cosB ,` then prove that `sin(A-B)/2=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sinA=sinB and cosA=cosB , then prove that sin. (A-B)/(2)=0 .

In sinA=sinB and cos A=cos B , then prove that sin(A-B)/(2)=0

If sinA+sinB=a and cosA+cosB=b then prove that sin(A+B)=(2ab)/(a^2+b^2) and cos(A+B)=(b^2-a^2)/(a^2+b^2)

If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

If sinA+sinB=C,cosA+cosB=D , then the value of sin(A+B) =

Statement I: If sinA=sinB , cosA=cosB then A= 2np + B Statement II :If A+B+C=90^@ then sin2A+sin2B + sin2C = 4 sinA sinB sinC Which of the above statements is correct?

If n. sin(A+2B)=sinA , then prove that: tan(A+B)=(1+n)/(1-n).tanB

If x sin(a+y)+sina.cos(a+y)=0 , then prove that (dy)/(dx) = (sin^(2)(a+y))/(sina)

If sinA+sinB=C,&cosA+cosB=D , then sin(A+B)=?