Home
Class 12
MATHS
Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x...

Let `cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)b epidot` If `x` satisfies the equation `a x^3+b x^2+c x-c_1=0,` then the value of `(b-a-c)` is_________

Promotional Banner

Similar Questions

Explore conceptually related problems

Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)=pi. If x satisfies the cubic equation ax^(3)+bx^(2)+cx-1=0. then a+b+c has the value equal to

If a, b and c satisfy the equation x^(3)-3x^(2) + 2x+1 =0 then what is the value of (1)/(a)+(1)/(b)+(1)/(c ) ?

Let cos^(-1)(4x^(3)-3x)=a+b cos^(-1)x If x in[-(1)/(2),-1], then a+b pi=

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)) , then the value of a + b pi is

Let cos^(4)x=a cos(4x)+b cos(2x)+c where a,b,c are constants then

integral of 1/(a sin^(^^)2x+b cos^(^^)2x+c)

if lim_(x rarr0)(1+a cos2x+b cos4x)/(x^(4)) exists for all x in R and has the value equal to c. Find the value of 3(a+b+c)

If a sin^(-1)x-b cos^(-1)x=c, then a sin^(-1)x+b cos^(-1) equal to

If x satisfies the cubic equation ax^(3)+bx^(2)+cx+d=0 such that cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)=pi , then find the value of (b+c)-(a+d) .