Home
Class 12
MATHS
Solve the equation tan^(-1)((x+1)/(x-1))...

Solve the equation `tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve tan^(-1) ((x+1)/(x-1)) + tan^(-1) ((x-1)/x) = tan^(-1)(-7)

The root of the equation tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36)) is

If tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)+pi then x =

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)

Number of solutions of the equation tan^(-1)((1)/(a-1))=tan^(-1)((1)/(x))+tan^(-1)((1)/(a^(2)-x+1)) is :

Solve the equation (tan^(-)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4)

The number of solutions of the equation tan^(-1)(x+1)+tan^(-1)x+tan^(-1)(x-1)=tan^(-1)3