Home
Class 12
MATHS
If alpha and beta are the solution of t...

If `alpha` and `beta` are the solution of the equation, `a tantheta+bsectheta=c` then show that `tan(alpha + beta) =(2ac)/(a^2-c^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the solution of the equation a tan theta +b sec theta=c ,then show that tan(alpha+beta)=2ac/(a^2-c^2)

If alpha, beta are the solutions of the equation a tantheta+b sectheta=c then show that tan(alpha+beta)=(2ac)/(a^2-c^2 .

If alpha and beta are the solutions of the equation a tan theta+b sec theta=c, then show that tan(alpha+beta)=(2ac)/(a^(2)-c^(2))

If alpha a n d beta are the solutions of the equation at a ntheta+bs e ctheta=c , then show that tan(alpha+beta)=(2a c)/(a^2-c^2)

If alpha and beta are the solutions of the equation a tan theta+b sec theta=c then (alpha+beta)=

If alpha and beta are the solution of the equation a sec theta+b tan theta=c then show that tan(alpha+beta)=(2bc)/(b^(2)-c^(2))

If alpha, beta be the solutions of theta for the equation a tan theta + b sec theta = c then prove that tan(alpha+ beta) = 2ac/(a^(2)-c^(2)) .

If alpha and beta are distinct roots of the equation : a tan theta+b sec theta=c , prove that tan (alpha+ beta)= (2ac)/(a^2-c^2) .

If alpha and beta be two roots of the equation a cos theta+ b sin theta=c , show that sin alpha+ sin beta=(2bc)/(a^(2)+b^(2)) ,sin alpha sin beta =(c^(2)-a^(2))/(a^(2)+b^(2)) and tan (alpha+ beta)=(2ab)/(a^(2)-b^(2))