Home
Class 12
MATHS
For 0 < theta < 2pi , sin^(-1)(sintheta)...

For `0 < theta < 2pi` , `sin^(-1)(sintheta)>cos^(-1)(sintheta)` is true when `theta` belongs to (a)`(pi/4,pi)` (b) `(pi,(3pi)/2)` (c)`(pi/4,(3pi)/4)` (d) `((3pi)/4,2pi)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(pi)/(4)-(3 pi)/(4)-(pi)/(6)+(pi)/(4)=

Given both theta and phi are acute angles and sin theta=(1)/(2),cos varphi=(1)/(3), then the value of theta+varphi belongs to (a)((pi)/(3),(pi)/(2)]( b) ((pi)/(2),(2 pi)/(3)] (c) ((2 pi)/(3),(5 pi)/(6)] (d) ((5 pi)/(6),pi]

(pi)/(4)+(2 pi)/(3)-(pi)/(6)

If 4cos^(2)theta=3 then theta =---- 1) (pi)/(6),(5 pi)/(6) 2) (pi)/(4),(3 pi)/(4) 3) (pi)/(3),(2 pi)/(3) 4) +-(pi)/(2)

((pi)/(4))+((2 pi)/(3))-((pi)/(6))

Range of tan^(-1)((2x)/(1+x^(2))) is (a) [-(pi)/(4),(pi)/(4)] (b) (-(pi)/(2),(pi)/(2))(c)(-(pi)/(2),(pi)/(4)) (d) [(pi)/(4),(pi)/(2)]

The function f(x)=tan^(-1)(sin x+cos x) is an increasing function in (-(pi)/(2),(pi)/(4))(b)(0,(pi)/(2))(-(pi)/(2),(pi)/(2))(d)((pi)/(4),(pi)/(2))

A solution of the equation cos^(2)theta+s int h eta+1=0 lies in the interval (-pi/4,pi/4) b.(pi/4,3 pi/4)c(3 pi/4,5 pi/4)d*(5 pi/4,7 pi/4)

The solution o the equation cos^(2)theta+s int h eta+1=0 lies in the interval (-pi/4,pi/4) b.(pi/4,3 pi/4)c(3 pi/4,5 pi/4)d.(5 pi/4,7 pi/4)

If f(x)={(-1, if x 0)) and g(x) =sinx+ cos x, then points of discontinuity of (fog)(x) in (0,2pi) are (A) pi/4,(5pi)/4 (B) pi/4,(3pi)/4 (C) pi/4,(7pi)/4 (D) (3pi)/4,(7pi)/4