Home
Class 12
MATHS
If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then x=...

If `tan^(-1)(sqrt(1+x^2-1))/x=4^0` then `x=tan2^0` (b) `x=tan4^0` `x=tan1/4^0` (d) `x=tan8^0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)(1)+tan^(-1)(x)=0 then the value of "x" is

Differentiate tan^(-1)((sqrt(1+x^(2)-1))/(x)) with respect to tan^(-1)x,x!=0

Differentiate tan^(-1)((sqrt(1+x^(2))-1)/(x))w*r.t tan^(-1)x, wherex !=0

Differentiate tan^(-1)((sqrt(1+x^(2)-1))/(x)) with respect to tan^(-1)x, when x!=0

tan^(-1)(x+2)+tan^(-1)(x-2)=(pi)/(4);x>0

The derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) with respect to tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2))) at x=0 is (1)/(8)(b)(1)/(4)(c)(1)/(2)(d)1

If: tan^(-1)(1/3) + tan^(-1)( 3/4) - tan^(-1)(x/3) =0 , then: x=

Differentiate tan^(-1)'(sqrt(1+x^(2))-1)/(x) w.r.t. tan^(-1)x , when x ne 0 .

If xge0 and tan^(-1)((1-x)/(1+x))=(1)/(2)tan^(-1)x, then x=