Home
Class 12
MATHS
The value of tan^(-1)(1)+cos^(-1)(-1/2)+...

The value of `tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2)` is equal to `pi/4` b.`(5pi)/(12)` c.`(3pi)/4` d. `(13pi)/(12)`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The value of [tan{pi/4+1/2sin^(-1)(a/b)}]^(-1)

The value of cos^(-1)(-1)-sin^(-1)(1) is- pi b .(pi)/(2)c*(3 pi)/(2)d.-(3 pi)/(2)

Knowledge Check

  • The value of sin^(-1)((12)/(13)) - sin ^(-1)((3)/(5)) is equal to (A) pi-sin ^(-1) ((63)/(65)) (B) (pi)/(2) - sin ^(-1)((56)/(65)) (C) (pi)/(2) - cos ^(-1)((9)/(65)) (D) pi - cos ^(-1)((3)/(65))

    A
    `pi-sin ^(-1) ((63)/(65))`
    B
    `(pi)/(2) - sin ^(-1)((56)/(65))`
    C
    `(pi)/(2) - cos ^(-1)((9)/(65)) `
    D
    `pi - cos ^(-1)((3)/(65))`
  • tan[pi/4+1/2cos^(-1)(a/b)]+tan[pi/4-1/2cos^(-1)(a/b)] is equal to

    A
    2a/b
    B
    2b/a
    C
    a/b
    D
    b/a
  • tan[pi/4+1/2cos^(-1)(a/b)]+tan[pi/4-1/2cos^(-1)(a/b)] is equal to

    A
    2a/b
    B
    2b/a
    C
    a/b
    D
    b/a
  • Similar Questions

    Explore conceptually related problems

    tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to (A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

    The value of sin^(-1)(cos(cos^(-1)(cos x)+sin^(-1)(sin x))) where x in((pi)/(2),pi), is equal to (pi)/(2)(b)-pi(c)pi (d) -(pi)/(2)

    The value of cos^(-1)(cos(5pi)/3)+sin^(-1)(sin(5pi)/3) is pi/2 (b) (5pi)/3 (c) (10pi)/3 (d) 0

    The value of cos^(-1)sqrt((2)/(3))-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A)(pi)/(3)(B)(pi)/(4)(C)(pi)/(2)(D)(pi)/(6)])

    tan[pi/4+1/2cos^(-1)(a/b)]+tan[pi/4-1/2cos^(-1)(a/b)] is equal to