Home
Class 11
MATHS
y=(sqrt(1-sin4A)+1)/(sqrt(1+sin4A)-1)...

y=(sqrt(1-sin4A)+1)/(sqrt(1+sin4A)-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(sqrt(1-sin4A)+1)/(sqrt(1+sin 4A)-1) , then y can be

If y=(sqrt(1-sin4x)+1)/(sqrt(1+sin 4x)-1) , then y can be

If y=(sqrt(1-sin4x)+1)/(sqrt(1+sin 4x)-1) , then y can be

If y=(sqrt(1-sin4x)+1)/(sqrt(1+sin 4x)-1) , then y can be

(sqrt(1+sin 2A)+sqrt(1-sin 2A) )/(sqrt(1 + sin 2A)-sqrt(1-sin2A)) If |tan A| < 1 , and | A I

(sqrt(1+sin 2A)+sqrt(1-sin 2A) )/(sqrt(1 + sin 2A)-sqrt(1-sin2A)) If |tan A| < 1 , and | A I

If x=(sqrt(1-sin4 theta)+1)/(sqrt(1+sin4 theta)-1) then one of the values of x is

If |tanA|<1 and |A| is acute, then (sqrt(1+sin2A)+(sqrt(1-sin2A)))/(sqrt(1+sin2A)-(sqrt(1-sin2A))) is equal to

The value of (sqrt(1+sin A)+sqrt(1-sin A))/(sqrt(1+sin A)-sqrt(1-sin A)) (When |Tan(A)/(2)|lt1 and |(A)/(2)| is acute) is

(sqrt(1+sin2A)+sqrt(1-sin2A))/(sqrt(1+sin2A)-sqrt(1-sin2A)) If |tan A|<1 and |AI